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The conventional unity magnitude zero vibration (UM-ZV) com-
mand shaping technigue is an effective means for eliminating vi-
bration in linear mechanical svstems with on-off actuators. This
paper discusses how the UM-ZV command shaping technique is
affected by a common nonlinearity: nonsymmetrical aceelerating

and braking dvnamics. Two approaches for creating new types of

UM-ZV shaped commands are presented: a closed-form analytic
solution and a numerical optimization approach. Both methods
reduce residual vibration of the nonlinear system more effectively
than the conventional UM-ZV shaped commands. Simulations and
experiments on a bridge crane confirm the effectiveness of the new
commands. [DOI: 10.1115/1.2948385]

1 Introduction

Many mechanical systems accelerate at a different rate than
they decelerate. This effect can be due to separate actuation
mechanisms. noncolocated actuators, or unilaterally dispersive dy-
namics. For example, nonsymmetrical acceleration-braking is a
common nonlinearity associated with overhead cranes. This non-
linearily is present in cranes which use a torque-limited electric
molor to accelerate the crane trolley and a friction brake to decel-
erate the crane trolley. This causes the crane trolley to accelerate
at a different rate than it decelerates, complicating position control
and oscillation suppression.

Input shaping has been proposed as a means to reduce the vi-
bration of oscillatory systems [ 1-4]. The input shaping process is
open loop, requires no extra sensors, and is easy to implement, but
is most effective for linear systems. For nonlinear systems, modi-
fications to conventional input shaping techniques must be made
to account for the nonlinearity [5-8]. The goal of this research
effort is to develop input shaping techniques that are effective for
the nonsymmetrical acceleration-braking nonlinearity. The results
of this study are applicable to a wide variety of systems whose
nonlinearities can be modeled using the nonsymmetrical
acceleration-braking framework.

This article proposes a generalized model of the nonlinear dy-

namics of such a system and describes the detrimental effect of

the nonsymmetrical acceleration-braking nonlinearity on conven-
tional unity magnitude zero vibration (UM-ZV) input shapers [9].
Next, the derivation of a UM-ZV input-shaped command that can
effectively cancel the oscillation of this nonlinear system under a
limited range of parameters is presented. Finally. a numerical op-
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timization technique is used to derive a UM-ZV shaped command
that can be applied to a much wider range of parameters. Com-
parisons of the effectiveness of all three UM-ZV shaped com-
mands are made through simulation and experiments.

2 Background

An input shaper is a series of impulses that have a zero in
frequency domain at a design frequency . To form an input-
shaped command, the series of impulses is convolved with any
desired baseline command. The convolution process preserves the
frequency domain properties of the input shaper, and the input-
shaped command will contain zero energy at the design frequency.
Linear systems actuated by the input-shaped command will not
exhibit oscillation at the design frequency.

The UM-ZV input shaper is chosen as the focus of this research
effort because it can be used to form faster commands than other
input shapers. Also, the UM-ZV commands can be implemented
using on/off actuators, such as the “constant speed”™ AC motors
common in small industrial cranes. A velocity pulse of the crane
trolley will be used as the baseline command for this investiga-
tion. A UM-ZV shaped velocity pulse with a design frequency of
w=27/T is shown in Fig. 1.

A block diagram showing the command signals, actuators, and
a planar crane is shown in Fig. 2. The unshaped command, r(7), is
a pulse of duration 1,,. This signal passes through an input shaper
to form the shaped command, r(r). The shaped command is sent
to the nonlinear actuation block that outputs the actual trolley
velocity, v(r). For this investigation, the nonsymmetrical
acceleration-braking nonlinearity is modeled as differing accelera-
tion and deceleration first-order time constants. The actual veloc-
ity will accelerate to the commanded speed with an exponential
rise characterized by a time constant, 7,, and decelerate with a
different time constant, 7;,. The crane block determines the pay -
load response. v(t), to the trolley velocity. v(z). using the equation
of motion of the payload: ¥(z)+(g/L)y=—uv(r). This formula o--
sumes a small vibration amplitude and a constant payload suspes-
sion length, L.

The controller architecture shown in Fig. 2 was implemented
both in simulation using MATLAB™ SIMULINK'™ and experimen-
tally using an instrumented bridge crane. The instrumented crane
has a 1 X 1 X 1 m® workspace and is actuated by Siemens moters,
drives. and a programmable logic controller (PLC). The sus-
pended payload deflection is recorded with a digital camera. The
maximum velocity of the crane trolley. v,.. is 0.17 m s™" and the
nominal payload suspension length, L, is 0.84 m.

The output of both the simulated and experimental systems is
the payload displacement y(1) as a function of the parameters of
the input-shaped command (#), t2, f3, 74. I35, Uy 1,). the param-
eters of the payload (L), and the parameters of the actuation non-
linearity (7,.7,). The parameters of the payload, unshaped pulse
(Vs 1)» and actuation nonlinearity will be given for any prob-
lem. The goal is to determine the parameters of the input-shaped
command so as to minimize residual vibration.

3 UM-ZV Shaping With an Acceleration-Braking
Nonlinearity

For a UM-ZV shaped system without any nonlinearities. the
residual vibration will be zero. In the presence of the nonsym-
metrical acceleration-braking nonlinearity, the performance of
UM-ZV shaped commands is degraded. Figure 3 shows the mag-
nitude of the residual vibration, as a function of the braking time
constant 7, and the velocity command pulse duration 7, with the
acceleration time constant set to 7,=0.117 s. For most of the
tested conditions, there exists a significant residual vibration when
using the UM-ZV input shaper to actuate the nonlincar system.
The experimental results validate the results from simulation. Al
all points in the test matrix, the difference between the simulation
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Fig. 1 UM-ZV shaper and UM-ZV shaped pulse

and the experiment is <23 mm, which is <15% of the unshaped
vibration amplitude. Discrepancies between the experimental and
simulated performance of the system are due to the excitation of
higher-order modes in the experimental system and an imperfect
model of the system nonlinearities.

It is notable that as the deceleration time constant approaches
the acceleration time constant (7,— 7,=0.117 s), the magnitude
of residual vibration decreases. When 7,=7,, the system becomes
linear, the UM-ZV commands function as designed, and the re-
sidual vibration is approximately zero. Even under the worst con-
ditions tested, the residual vibrations from the UM-ZV command
are much lower than the residual vibrations from unshaped com-
mands. A comparison between the residual vibration for unshaped
and UM-ZV shaped commands is presented in Fig. 4. In summary,
the UM-ZV shaped command can significantly reduce the residual
vibration of the system even when there is an acceleration-braking
nonlinearity. However, the resulting system still exhibits sensitiv-
ity to the magnitudes of the acceleration and deceleration time
constants and the command pulse duration. This indicates that the
UM-ZV shaper cannot robustly compensate for the nonlinearity.

4 Closed-Form Compensated UM-ZV Shaping

In this section, we derive and minimize an analytical expression
for the residual vibration of the UM-ZV shaped nonlinearly actu-
ated system. This expression can be solved to find the step times
(112121514, 15) of a UM-ZV shaped command that will more ef-
fectively compensate for the acceleration-braking nonlinearity.

The ramp-up portion of the trolley velocity profile can be rep-
resented as a function of the step times 7y, 7>, and 13, as illustrated
in Fig. 2, and given in this equation;
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Fig. 3 Payload residual vibration using UM-ZV commands as a
function of t, and 7, (7,=0.117 s)

The steady state response of a system to Eq. (1) can be derived
from the linear system theory. For example, if v(7) is used to drive
an undamped system, then

Y0 =2 viln),

i

Yi=0 (2)

where y;(7) is the deflection due to the ith term in Eq. (1) and is
given by
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A more compact representation can be formed using phasor
notation. Using phasor notation, the residual vibration amplitude
Alt).15.13) can be stated as
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Fig. 2 Block diagram of the control and the actuation system
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Fig. 4 Residual vibration using unshaped and UM-ZV shaped
commands as a function of t, (7,=0.117 s, 7,=0.065 s)

To minimize the amplitude of the residual vibration, A(r,,15,13)
can be set to zero. Assuming that the time of the first impulse is
t,=0, then

ly)l=1, £y, =0
(7,0)°+ 1 4 1 4f 1
[val= \/———. 4Ly:=wir+tan™'| — | -tan™'|{ —
) (rw)”+ 1 = wT, wT,/
(5)
lval=1, Zys=wn

Two methods are available for finding the times of the second
and third impulses that will yield zero residual vibration. The first
method involves the substitution of Eq. (5) into Eq. (4), and the
solution of the simultaneous algebraic equations for r» and 1.
Alternatively, a geometric approach is more efficient and insight-
ful.

Each of the phasors in Eq. (5) can be represented as vectors, as
shown in Fig. 5. When the vectors sum up to zero, they can be
arranged as a triangle in the vector space and the magnitude of the
residual vibration is zero. The angles of the triangle relate to the
phasor angles in Eq. (5) by the relations Zy>=a> and Ly;=as.
The law of cosines can be used to solve for e; and «;. Substitut-
ing the results into Eq. (5) yields
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Fig. 5 Phasor diagram for UM-ZV input shaper ramp-up
command
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Fig. 6 Constraints on +,/T and 7,/ T for the UM-ZV_ shapec
command

It is notable that additional solutions can be found by adding
integer multiples of the system period, 7, to 1, or t5. The non
negative integers n and m are defined such that 0=n=m, s0 as 1«
ensure that 1, <f3. To solve for the ramp-down impulse times r.
and r5, exchange the values of 7, and 7, in Eq. (6) and solve fo
the new values of 1> and 7;. where ty=1,+1, and 15=1,+7;. Thi
new unity magnitude shaped command is uniquely defined by the
step times () .f5.13.14,15). In the remainder of this article it will be
referred to as the UM-ZV, command.

The solution to the nonlinear acceleration-braking UM-ZV,
input-shaping problem proposed in Eq. (6) is limited in its appli-
cability. First, the acceleration or deceleration that is associatec
with each impulse of the UM-ZV . shaped command must be al-
lowed to reach its final velocity before the next switch time. This
is a requirement of the linear system theory employed in Eq. (2)
This constraint can be approximated mathematically as

(f] = 37”) N (fr;—!: > 37'.,,) N (f4 _II’ > 3‘.";,) n (I_q 1 = .."'T")

(7)

Meeting these constraints is accomplished simply by increasing
the value of m or n in Eq. (6) until Eq. (7) is satisfied.

Second, the value of B as defined in Eq. (6) must be in the
range —| <=1 so as to ensure that cos™'(B) is real. This pro-
vides a constraint on the values of w7, and w7, that will result in
real impulse times f,., 3. This constraint can be physically visual-
ized by using Fig. 5. The vibration from the acceleration impulses
(¥,.¥3) must be canceled by the vibration from the deceleration
impulse (y»). When 7, 7, then the vibration from the two ac-
celeration steps (y,.¥3) is smaller than the vibration from the
braking step (y») and the phasors can never sum up to zero. Math-
ematically, this constraint can be expressed as

| —m——
o7,> S\(w7,)* -3

(8)
| ————
w7, > 5\(wﬁ,)' -3

For cases where these constraints cannot be satisfied, the ana-
Iytical solution is infeasible, as shown in Fig. 6. For problems in
this region of the parameter space, the numerically derived
UM-ZV shaping technique proposed in the next section can pro-
vide a usable solution.

To test the effectiveness of the UM-ZV, shaped command,
simulations and experiments were conducted. The residual vibra-
tion induced by the UM-ZV,. command was measured for a vari-
ety of pulse times and deceleration time constants. The results are
presented in Fig. 7 along with the results for the UM-ZV input-
shaped commands for comparison.
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Fig. 7 Residual vibration for UM-ZV and UM-2V_ shaped com-
mands as a function of t, (7,=0.117 s, 7,=0.065 s)

This experiment shows that the UM-ZV_ shaped commands
exhibit substantially improved performance over the UM-ZV
shaper for the region in which they are defined. The UM-ZV,.
shaped commands are more robust to the acceleration-braking
nonlinearity than the UM-ZV commands and produce signifi-
cantly less residual vibration for most of the problem space.

5 Numerically Derived UM-ZV Shaping

The commands presented in the previous section have the ad-
vantage of being derived in a closed form. However, they are only
applicable to a subset of the possible problem space, as defined by
the constraints in Egs. (7) and (8). For problems outside of these
constraints, a numerical optimization method of deriving the unity
magnitude shaped command is proposed. A flowchart of the de-
sign scheme is shown in Fig. 8. The impulse times for the con-
ventional UM-ZV shaper are used to initialize the optimization
routine. The MATLAB™ function fminsearch.m is used to carry out
a simplex-based nonlinear optimization strategy. The optimization
function calls the nonlinear system simulation at each iteration to
calculate the residual vibration. The optimization cost function to
be minimized is the magnitude of the payload residual vibration.
When the simulated maximum residual vibration reaches a value
below 0.1 mm and all constraints are satisfied, the optimization is
stopped and the values of the step times (t5.73.15./5) that define
the optimal UM-ZV shaped command are recorded. This optimal
command is labeled UM-ZV,,. Roughly 30 s of computation time
is required to derive the UM-ZV,, at a single point using MAT-

(]niiializc impulse timcs)

Run Simulink i
. ] > Ca[cu!ate l:e51dual
Simulation vibration

'y
Modify impulse
times

Residual
Vibration < 0.lmm
and constraints
are met

Save results

Fig. 8 Flowchart for the UM-ZV, numerical optimization
routine
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Fig. 9 Simulated residual vibration of UM-ZV shaped com-
mands for nonlinear system

LAB™ 6.1 on a PC with an AMD Athalon 3200 processor.

In order to determine the performance of the UM-ZV, com-
mand. this procedure was followed for 1000 evenly spaced points
within the three-dimensional design space

( 0.028 = % < 0.45) n (0.028 = % = 0.45)
T?
al (().1 = —IL = 3.0) 9)

The performances of the UM-ZV,,, UM-ZV ., and UM-ZV com-
mands in simulation are shown in Fig. 9. Each subplot shows the
dependence of the system’s residual vibration on 7,/ 7 and 7,/ T at
a fixed value of 7,/T. It is notable that along the line 7,=7, the
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Table 1 Time constants and pulse widths used in experimen-
tal and numerical comparison

Experiment

N(}E.) - E %
T T T

1 0.187 0.123 2.03

2 0.150 0.135 1.55

3 0.113 0.147 1.06

4 0.077 0.158 0.583

5 0.040 0.170 0.100

system is linear and all three UM-ZV commands are equivalent
and equally effective. In other regions of the problem space, both
the UM-ZV and UM-ZV, commands show significant residual
vibration. For the UM-ZV,. command, the regions where the com-
mand is not defined are visible, similar to Fig. 6. In contrast, the
UM-ZV,, is defined and effective for the entire problem space.

A subset of the problem space, defined in Table 1, was chosen
for further analysis and experimental investigation. These experi-
ments lie along a line in the three-dimensional problem space. The
residual vibration of the system was simulated continuously along
the line between Experiment | and Experiment 5, and was experi-
mentally measured at the five discrete points. The comparison of
the effectiveness of the UM-ZV,, UM-ZV,. and UM-ZV com-
mands is shown in Fig. 10.

For this comparison, the UM-ZV, command parameters
(t15,13.14.15) were linearly interpolated from the 1000 point
dataset. This causes the response of the UM-ZV,, command shown
in Fig. 10 to deviate in some places from the perfect solution
shown in Fig. 9.

All of the UM-ZV shaped commands outperform the unshaped
commands. The UM-ZV,. commands show significantly less sen-
sitivity to the varying parameters of the nonlinearity than the
UM-ZV commands. The UM-ZV, command shows the lowest
residual vibration for a majority of the experiments and the high-
est robustness o the acceleration-braking nonlinearity.

Unshaped (- =Simulation : 0 Experiment)

UM-ZV (=== Simulation : x Experiment)
UM-ZV. (---Simulation: O Experiment)

UM-ZVy (— Simulation : ¥ Experiment)

Residual Vibration Amplitude (m)

Experiment Number

Fig. 10 Simulated and experimental responses for different
UM-ZV shaped commands
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6 Discussion

Despite the fact that the UM-ZV,, command is more effective
and robust than the other UM-ZV commands, it is not preferred in
every application. Because the derivation of the UM-ZV, com-
mand is computationally costly, it is unlikely that the UM-ZV,,
can be derived and implemented in real time to reduce the vibra-
tion of unplanned or human operator-controlled motion. Instead,
the UM-ZV,, command can be calculated by interpolation from a
solution dataset as was done in the experiment above. For repeti-
tive or planned motions where the characteristics of the motion
(1,.T) are known in advance, the UM-ZV,, can be derived offline

“and programed into the motion controller, resulting in more reli-

ably effective UM-ZV,, commands. As the UM-ZV . and UM-ZV
commands are fully described by a closed-form solution, they can
casily be implemented in real time or repetitive control environ-
ments.

All of the UM-ZV shaped commands derived for this study are
open loop reference commands. As such, they are somewhat sen-
sitive to errors in the model of the system. All of the shaped
commands exhibit “ZV” sensitivity to errors in the model of the
system’s natural frequency. That is, a 10% change in natural fre-
quency leads to an increase of approximately 15% in the ratio of
shaped to unshaped residual vibration [1]. The robustness of the
shaped commands to variations in acceleration and deceleration
time constants is shown in Fig. 9.

7 Conclusions

The nonlinearity caused by unequal acceleration and decelera-
tion time constants has a detrimental effect on the effectiveness of
UM-ZV input shapers. Two new methods were presented to im-
prove the performance of the UM-ZV shaped command to com-
pensate for the nonlinearity: a closed-form solution and a numeri-
cally derived solution. The closed-form solution (UM-ZV,) is
more effective than the conventional UM-ZV input shaper over a
limited range of problem parameters. The numerically optimied
solution (UM-ZV ) has improved effectiveness and a wide runge
of applicability, but is difficult to apply to unplanned motions.

- Based on the requirements of the application, a combination of

any of these command shaping techniques can be used to com-
pensate for the nonlinearity for a wide variety of problem puram-
eters. Simulations and experimental tests demonstrated the effec-
tiveness of the derivation techniques and resulting input-shaped
commands.
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