
 1  

24-787 Artificial Intelligence and Machine Learning for Engineering Design 
Department of Mechanical Engineering 

Carnegie Mellon University 
Pittsburgh, PA, USA 
Project Report 2012

AMERICAN SIGN LANGUAGE RECOGNITION SYSTEM 
 
 

Jason Atwood 
Carnegie Mellon University 

Pittsburgh, PA, USA 
jatwood@cmu.edu 

Matthew Eicholtz 
Carnegie Mellon University 

Pittsburgh, PA, USA 
meicholt@andrew.cmu.edu 

Justin Farrell 
Carnegie Mellon University 

Pittsburgh, PA, USA 
justin.v.farrell@gmail.com 

 
 

ABSTRACT 
Sign language translation is a promising application for 

vision-based gesture recognition methods, in which highly-
structured combinations of static and dynamic gestures 
correlate to a given lexicon. Machine learning techniques can 
be used to create interactive educational tools or to help a 
hearing-impaired person communicate more effectively with 
someone who does not know sign language. In this paper, the 
development of an online sign language recognizer is 
described. The scope of the project is limited to static letters in 
the American Sign Language (ASL) alphabet. Two machine 
learning approaches were implemented: (1) a single hidden 
layer neural network and (2) a principal component analysis 
(PCA) model.  In the former case, images were processed to 
reduce the number of pixels (input nodes to the network) while 
maintaining an appropriate amount of variance between signs. 
Over-fitting was avoided using k-fold cross validation (k=2). 
The PCA model facilitated reduced dimensionality without loss 
of relevant information (e.g. from scaling or normalization). 
The results indicate that both approaches recognize signs 
effectively for subjects included in the training process (>95%), 
while untrained subjects produce poor accuracy (~40-70%). 
When all subjects were included in the training set, the best 
neural network exhibited 95.8% accuracy compared to 96.1% 
accuracy for the PCA model. Custom MATLAB user interfaces 
were created for acquiring training samples and for testing the 
machine learning approaches on live data streamed from a 
webcam. Despite high error for unseen subjects in offline 
processing, the system is able to recognize all letters in the real-
time GUI simply by adjusting the hand position or orientation. 
Future improvements include incorporating a dynamic 
bounding box, lifting the restrictions on scaling/ 
rotation/background noise, and recognition of dynamic letters 
and two-handed words. 

INTRODUCTION 
Real-time gesture recognition has been highly researched 

over the past two decades, with many human-computer 
interface applications ranging from virtual reality to sign 
language translation [1]. Within the latter domain, researchers 
have implemented both vision-based [2-9] and sensor-based 

(e.g. instrumented gloves) [10-13] recognition. While both 
methods have produced favorable results, vision-based 
recognizers do not require hardware to be worn by the user, 
producing a more natural feel. Among both architectures, 
neural networks are a popular machine learning technique for 
sign language recognition [4-6,9-11,12]. 

American Sign Language (ASL) consists of both static and 
dynamic gestures. For continuous communication, hand shape, 
movement, and location (often referred to as a “chereme” [8]) 
are crucial features during translation. The complexity 
introduced by temporal information lends itself well to 
techniques such as hidden Markov models [7], recurrent neural 
networks [6] (also time-delayed [9]), or a combination of both 
[10]. More generally, dynamic gestures favor feature extraction 
rather than image-based input to recognition models. 

A much simpler task is to limit the scope of the system to 
static gestures. Perhaps the most obvious application is finger-
spelling, which involves the discrete set of 26 signs 
corresponding to the letters of the alphabet (note that two 
letters, J and Z, are dynamic). The authors have developed a 
computational tool for online recognition of the static letters in 
the alphabet using image-based neural networks and principal 
component analysis (PCA). The following sections detail the 
methods used for acquiring data samples, processing images, 
implementing the aforementioned machine learning techniques, 
and creating the user interface. Results are presented and 
discussed along with potential improvements for the future. 

TECHNICAL APPROACH 
Data from three subjects was collected and utilized to 

construct a neural network and principle component model. 
Each subject generated 20 samples of each static letter (480 
total samples). The data was subsequently used to evaluate the 
performance of both models. 

Image Acquisition 
A custom user interface (see Figure 1) was created using 

MATLAB software to facilitate efficient acquisition of training 
samples. 
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Figure 1. Custom GUI for acquiring sample images. (A) File settings panel 
includes self-selected directory and filename prefix (e.g. initials) options. File 
number increments automatically. (B) Live video stream from webcam. Green 
bounding box is fixed. (C) User selects appropriate label from the sign palette. 
Each letter corresponds to a number (1-26). (D) Buttons for controlling camera, 
image capture, and exiting the GUI. 

Image Processing 
One of the major challenges for image-based recognition is 

optimization of image processing protocol. Over-processing 
(specifically with regard to normalization and scaling), while 
reducing image dimensionality, can lead to poor variance 
between signs. Under-processing, by contrast, allows for easy 
differentiation of signs but increases dimensionality. Finding 
the right balance is crucial for obtaining high accuracy while 
reducing computational complexity. For this project, 
combinations of grayscale conversion, cropping, scaling, and 
binary conversion were employed for each of the machine 
learning methods. Figure 2 illustrates the processing results on 
a sample image. 

          

 

 

 

 

 

 

 

        
Figure 2. Image processing routine on sample image (letter V). (A) Original 
image. (B) Cropped and scaled. (C) Sharpened for contrast. (D) Converted to 
binary. 

Neural Network 
A neural network was constructed to recognize ASL 

letters. The appropriate structure parameters and perceptron 
weights were selected based on a comparison method. Initially, 
several networks were generated with varied number of hidden 
nodes and training data size. Hidden nodes numbered 10, 50, 
100, 250, or 500. The training data consisted of 120, 480, or 
960 sample points. Each network was limited to a single hidden 
layer, a single number of input and output nodes, a max epoch 
of 100, and feed-forward node interconnections. To avoid over-
fitting the data, k-fold cross validation was implemented with 
k=2, such that half of the training set was not used to train the 
network. 

The neural networks were trained using a selection of the 
480 samples, after the images had been cropped, scaled, 
sharpened, and binary filtered to a 50x75 pixel image. The 
image pixels were then arranged into a single column vector, 
corresponding to 3,750 input nodes to the network. The 
alphabetic output of the network was represented by 26 binary 
nodes, each corresponding to one of 26 letters. The structure of 
these neural networks is shown in Figure 3. The resulting 15 
networks were ranked based on their performance on validation 
data. The best-performing neural network was selected for 
implementation of real-time ASL translation. 

The above process was implemented four times with 
varied training data sets. In three instances, one test subject’s 
data was removed from the training set, resulting in a network 
trained on two subjects. To generate the fourth and final 
network, all subjects contributed equal amounts of training 
data. 

Figure 3. Neural network structure consisting of a single input layer, hidden 
layer, and output later. The number of hidden nodes and training samples were 
varied to find the best-performing network. 

Principle Component Analysis 
For comparison to the neural network, PCA with a nearest-

neighbor classifier was used for sign recognition. While scaling 
images to reduce the pixel count is one method of reducing the 
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dimensionality of an image, it results in a substantial amount of 
information loss, with no regard for the importance of that 
information. By comparison, PCA reduces the dimensionality 
of the problem through a selective elimination the least 
important features. 

Each 200x300 cropped grayscale training image was 
converted to a 60,000x1 image vector, Γi. For training samples 
used (960 total), the mean-subtracted vectors were compiled 
into matrix A60,000 x 960, where 

[ ],...,,, 96021 μμμ −Γ−Γ−Γ=A     with  ∑
=

Γ=
960

1960
1

i
iμ  

The set of eigenvectors, νi, of ATA determine the linear 
combination of the training images that form the eigenhands, 
Ui.  
 

Ui = ν ik
k=1

960

∑ (Γi −μ)   for eigenhand i=1, 2,…, 960 

 
Together, the eigenhands form a basis for the hand space, 

where any sign can be represented as the linear combination of 
eigenhands. Each original training image was projected into the 
hand space where, without any loss of data, the dimensionality 
of the vector was reduced from 60,000 to 960. Discarding 
features corresponding to lower eigenvalues can further reduce 
the dimensionality. Figure 4 shows the first three eigenhands 
of the hand space. The coefficients, ai, are the weights 
corresponding to each eigenhand that represent an image in the 
hand space. 

Figure 4. Illustration of the first three eigenhands in the hand space. 
 
When a new test image is introduced, it is projected into 

the hand space where it is represented as a linear combination 
of the eigenhands. Once in the hand space, the nearest-neighbor 
classifier is used to label the new sign as a specific letter. This 
is accomplished by finding the training image with the 
minimum Euclidean distance to the test image. Although the 
nearest-neighbor search can be done in the original R60,000 
space, the computational cost is too high to perform online. By 
applying PCA and projecting images into the hand space, the 
computation is fast enough to perform at least one recognition 
per second. 

Online Recognition 
The results from the neural network and PCA approaches 

described above are utilized for real-time sign language 
recognition using a custom GUI (not pictured). The user 
interface is similar to the training acquisition GUI shown in 
Figure 1, with the exception that the top panel is used for 
selection of a neural network or PCA, the sign palette is 
supplanted with the output weights for each letter (neural 
network case only), and the prediction panel shows the 
recognized letter. The prediction rate is set to update once per 
second. The same static bounding box is used as before. 

RESULTS 

Neural Network 
The structural parameters of the best performing network 

in each of the four training cases are listed in Table 1 along 
with performance measures. Training accuracy refers to the 
percentage of trained images that were recognized correctly. 
Validation accuracy reports the percentage of validation 
(untrained) images that were recognized correctly. The three 
networks that were trained on only two subjects were tested 
against the third subject (see Table 2). 

Table 1. Best performing neural networks. 
Training data Subjects 1,2 Subjects 1,3 Subjects 2,3 All subjects 
Hidden nodes 250 100 100 100 
Training size 960 960 960 1440 
Training 
accuracy (%) 

100 100 100 100 

Validation 
accuracy (%) 

97.3 98.8 95.4 95.8 
 

Table 2. Neural network response to new subjects. 
Training data Subjects 1,2 Subjects 1,3 Subjects 2,3 
Test data Subject 3 Subject 2 Subject 1 
Test accuracy (%) 57.5 43.8 48.8 

 

Principle Component Analysis 
The performance of the PCA model was tested in two 

ways, both of which use only the 24 static signs in the ASL 
alphabet. First, the model was trained by all three subjects, and 
was tested on unseen samples from those same subjects. The 
results are given in Table 3. 

Table 3. PCA accuracy on unseen data. 
Training data All subjects 
Test data All subjects 
Test accuracy (%) 96.1 

 

 
For the second test, the model was trained on two subjects 

and subsequently tested on the third, unseen subject. The 
results are given in Table 4. 

Table 4. PCA accuracy on unseen subjects. 
Training data Subjects 1,2 Subjects 1,3 Subjects 2,3 
Test data Subject 3 Subject 2 Subject 1 
Test accuracy (%) 71.5 45.2 62.7 
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DISCUSSION 
The results demonstrate that a low-dimensionality neural 

network can accurately recognize static letters in the ASL 
alphabet when the user is included in the training of the neural 
network. However, even the best performing network had 
difficulty recognizing signs when introduced to a new test 
subject. A probable source of error is the static bounding box 
used in image acquisition. Accuracy decreases if the test 
subject has a consistently different hand position or orientation 
within the bounding box compared to the training subjects. 
Hand size also varies among subjects, which needs to be 
normalized in the image processing routine to improve 
performance. Despite large errors in offline processing of test 
subjects, the online GUI was able to correctly predict every 
static letter for test subjects with minor alterations in scale, 
position, and orientation of the hand within the bounding box. 

For the first PCA test, in which the model was tested on 
unseen data from seen subjects, the accuracy was very high. In 
this test, the variability between users’ signing technique as 
well as hand placement is eliminated. The largest variability is 
the lack of repeatability of a single subject to display a given 
sign. When the model is tested on an unseen subject, the 
accuracy is reduced drastically. This, to some extent, is 
expected from a PCA technique unless further steps are taken 
to normalize the orientation and scale of the images. Since PCA 
is sensitive to rotation, translation, and scaling, the introduction 
of a new subject with an individual technique for the sign 
causes issues. 

Despite successful implementation of both a neural 
network and PCA model, the system could benefit from several 
improvements. One method to rectify translation, scale, and 
rotation issues is to add a dynamic bounding box for image 
capture. This technique would locate the hand during video 
streaming, perhaps in a similar manner to previous methods for 
tracking dynamic hand motions [14], and frame the sign such 
that orientation and scale are uniform across all images. 
Another solution is to create large amounts of training data 
from few samples by artificially altering translation, rotation, 
and scale effects, much like an approach used in symbol 
recognition [15]. Other improvements include the recognition 
of dynamic letters and words, which add a temporal component 
to the problem. In the short term (i.e. to detect letters J and Z), 
output nodes can be added to the neural network for static 
images produced sequentially when signing those letters. The 
online system would then wait for the proper sequence of 
outputs (e.g. 10-27-28 could represent J and 26-29-30 could 
represent Z) before displaying the predicted sign. More 
intelligent options that have already been explored include 
recurrent neural networks [6] and hidden Markov models [7]. 

CONCLUSIONS 
Neural networks and principal component analysis are two 

powerful machine learning approaches for real-time sign 

language recognition. Image-based input is successful for static 
signs, although a feature-based approach may be better for 
dynamic gestures. The recognition techniques presented here 
can have a broad impact on future human-computer interaction 
applications. 
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